Will QSFP28 be a better way to 100G?


by www.fiber-mart.com
The Quad Small Form-factor Pluggable (QSFP) is a compact, hot-pluggable transceiver used for data communications applications. The form factor and electrical interface are specified by a multi-source agreement (MSA) under the auspices of the Small Form Factor Committee. It interfaces networking hardware to a fiber optic cable or active or passive electrical copper connection. It is an industry format jointly developed and supported by many network component vendors, allowing data rates from 4×10 Gbit/s.The format specification is evolving to enable higher data rates; as of May 2013, highest possible rate is 4×28 Gbit/s (also known as QSFP28).
 
 
4 x 28 Gbit/s QSFP+ (QSFP28)
The QSFP28 standard is designed to carry 100 Gigabit Ethernet, EDR InfiniBand or 32G Fibre Channel. This transceiver type is also used with direct-attach breakout cables to adapt a single 100GbE port to four independent 25 gigabit ethernet ports (QSFP28-to-4x-SFP28) Sometimes this transceiver type is also referred to as “QSFP100” or “100G QSFP”  for sake of simplicity.
 
The 100G QSFP28 transceiver modules are designed for use in 100 Gigabit Ethernet, 128GFC and 4x28G OTN links over multimode fiber. They are compliant with the QSFP28 MSA, 128GFC, IEEE 802.3bm 100GBASE-SR4 and CAUI-4. Digital diagnostics functions are available via the I2C interface as specified by the QSFP28 MSA.
 
An optical transceiver form factor is specified by a multisource agreement (MSA). An MSA is an agreement between multiple manufacturers to make optical transceivers that can plug into switches.
 
QSFP28 module uses four lanes for 100G optical signal transmitting like 40G QSFP+. However, each lane of QSFP28 can transmit 25G optical signal. To fit the various requirements in practical applications, IEEE and MSA standards that support different transmission distances and fiber types are being published.
 
 
 
100Gbase-SR4 QSFP28
100Gbase SR4 QSFP28 module uses eight multimode fibers for 100G dual-way transmission over 850nm. It can support a transmission distance up to 70m over OM3 and 100m OM4 with a MTP interface. 12-fiber MTP OM3/OM4 trunk cables are suggested to be used with QSFP-100G-SR4 modules. 100Gbase-SR4 QSFP28 is the most popular QSFP28 module according to research.
 
 
 
100Gbase-LR4 QSFP28
It focuses on longer transmission distance over single-mode fiber. 100Gbase-LR4 QSFP28 has a duplex LC interface and uses WDM technologies to achieve 100G dual-way transmission over four different wavelengths around 1310nm. It can support distances up to 10km.
 
The 100G-QSFP-LR4 module can support 10km, which is too much for a lot of single-mode applications. It would be uneconomical to buy a 10km module for just 1km or 2km application. MSA has published two 100G standards — 100Gbase-PSM4 and 100Gbase-CWDM4, which can help to decrease the cost of 100G deployment.
 
 
 
100Gbase-PSM4 QSFP28
100Gbase-PSM4 QSFP28 module has a MTP interface working on wavelength of 1310nm for 100G transmission over single-mode fibers. It can support transmission distance up to 500 meters. 100Gbase-PSM4 QSFP28 module is much cheaper than 100Gbase-LR4 QSFP28 module. And 500 meter’s transmission distance can cover a wide range of applications.
 
 
 
100Gbase-CWDM4 QSFP28
For longer transmission distance, 100Gbase-CWDM4 QSFP28 is suggested, which supports a distance up to 2km over single-mode fiber optic cable. 100Gbase-CWDM4 standard is published by MSA, which is a more cost-effective solution for a wide range of applications compared with 100Gbase-LR4. This module uses CWDM technologies to transmit the 100G optical signal via a duplex LC interface over wavelengths near 1310nm.
 
 
 
100G QSFP28 DAC
100G QSFP28 family also includes a series of direct attach cables. There are mainly two types of QSFP28 DAC, which are QSFP28 to QSFP28 DAC and QSFP28 to SFP28 DAC. These QSFP28 DACs are cost-effective solution for 100G transmission less than 5 meters.

Suggested Similar Articles

About the Author

Leave a Reply

Your email address will not be published. Required fields are marked *